Melajak Sejarah dan Komposisi Alam Semesta

Berbicara tentang antariksa tidak pernah habisnya. Alam Semesta kita begitu menakjubkan, mulai dari bintang yang lahir dan mati, planet-planet yang mengitari Matahari, sinar kosmik, dan hal-hal misterius lainnya yang masih misteri dalam ilmu sains manusia. Ada dua cabang ilmu dasar yang mempelajari alam semesta, yaitu astronomi dan kosmologi. Astronomi mempelajari benda-benda angkasa di luar Bumi dan merupakan salah satu ilmu tertua dalam peradaban manusia. Setelah manusia mengenal metoda ilmiah, ilmu fisika, dan teknologi obsevasi berkembang, kosmologi kemudian lahir sebagai ilmu yang mempelajari asal-muasal, komposisi, dan perkembangan Alam Semesta.
Tidaklah sulit untuk mencari objek astronomi, dua contoh yang paling dekat dengan kehidupan kita sehari-hari adalah Matahari dan Bulan. Matahari adalah keluarga bintang yang memancarkan cahaya hasil dari reaksi nuklir fusi. Seperti bintang lainnya,  Matahari pada suatu saat akan kehabisan bahan bakar untuk reaksi nuklirnya dan kemudian mati. Sementara Bulan adalah keluarga satelit yang mengorbit pada sebuah planet karena pengaruh gravitasi dari planet tersebut. Contoh planet adalah Bumi yang kita tinggali sekarang.
Tidak perlu instumen canggih untuk mencari benda-benda angkasa hanya sekedar untuk memulai belajar astronomi. Tapi bagaimana dengan kosmologi?
Gambar 1: Sekitar 1% dari “semut” yang dilihat di pesawat televisi (terutama saat perpindahan canel) adalah berasal dari CMB.
Gambar 1: Sekitar 1% dari “semut” yang dilihat di pesawat televisi (terutama saat perpindahan canel) adalah berasal dari CMB.
Mungkin kita tidak sadar, seperti halnya astronomi, ada dua contoh objek kosmologi yang paling dekat dengan kehidupan kita. Pertama adalah kegelapan di malam hari, kedua adalah siaran “semut” yang muncul saat pergantian satu canel ke canel lain di pesawat televisi kita. Sekitar 1% dari “semut” yang kita lihat tersebut (Gambar 1) berasal dari Cosmic Microwave Background (CMB / Latar Kosmik Gelombang Radio) – mungkin merupakan objek yang paling berharga saat ini dalam ilmu kosmologi.
Malam Hari Yang Gelap
Fenomena malam hari yang gelap terlihat sederhana, namun penjelasannya tidaklah begitu sederhana dalam kosmologi. Kosmologi menganut prinsip bahwa Alam Semesta dalam skala besar bersifat isotropik dan homogen; karena ada lebih dari 400 miliar (1 miliar = 109) bintang di dalam galaksi kita – dengan kata Bumi kita ‘dikepung’ oleh bintang-bintang – maka seharusnya Bumi kita terang-benderang baik siang ataupun malam. Paradoks ini disebut Paradoks Olber (Heinrich Olber, Astronom Jerman, 1758 – 1840)  dan sudah dibahas di Rubrik Cakrawala beberapa waktu yang lewat.
Salah satu solusi paradoks ini adalah menyaratkan Alam Semesta memiliki umur tertentu dan mengembang. Dan ini adalah dua karakter Alam Semesta yang penting dalam ilmu kosmologi. Jadi, malam hari yang gelap adalah satu dari dua contoh objek kosmologi yang paling dekat dengan kehidupan kita.
Radiasi Latar Kosmik Gelombang Radio (CMB)
Gambar 2. Penzias (kiri) dan Wilson (kanan) berpose di depan antena yang memberikan mereka Hadiah Nobel pada tahun 1975 untuk penemuan CMB.
Gambar 2. Penzias (kiri) dan Wilson (kanan) berpose di depan antena yang memberikan mereka Hadiah Nobel pada tahun 1975 untuk penemuan CMB.
Radiasi Latar Kosmik Gelombang Radio (biasa disingkat dengan CMB) adalah radiasi elektromagnetik dengan frekuensi pada daerah gelombang radio. CMB pertama kali terdeteksi secara tidak sengaja oleh Arno Penzias dan Robert Wilson pada tahun 1965 (Gambar 2), dua orang insinyur Bell Telephone Laboratories yang sedang melakukan riset untuk memperbaiki transmisi data komunikasi untuk kepentingan industri. Mereka mendapat kesulitan untuk menghilangkan gelombang gangguan (noise) pada daerah gelombang radio yang diterima antena mereka dari segala arah. Segala cara sudah dilakukan termasuk mengusir burung-burung yang bersarang di bagian dalam antena dan membersihkan dari kotorannya.
Gangguan ini ternyata adalah CMB, yang sebelumnya sudah diprediksi oleh George Gamow (Fisikawan Ukraina, 1904 – 1968)  pada tahun 1946 sebagai salah satu konsekuensi dari Teori Dentuman Besar (Bigbang Theory). Teori Dentuman Besar dicetuskan pertama kali oleh Georges Lemaître (Fisikawan Belgia dan juga Pendeta Katolik, 1894 – 1966) pada tahun 1931. Teori ini menjelaskan kejadian awal alam semesta yang merupakan sebuah titik kecil masif tanpa dimensi dan kemudian meledak sehingga kemudian terciptalah dimensi ruang-waktu, radiasi, dan materi (Gambar 3). Sisa-sisa radiasi yang terjadi saat dentuman itu, sesuai dengan teori ini, seharusnya masih ada sampai sekarang dalam bentuk gelombang radio. Penzias dan Wilson mendapatkan Nobel pada tahun 1978 atas pembuktian eksistensi radiasi ini.
Gambar 3. Sejarah singkat Alam Semesta dalam gambar. Saat ini fisika kita belum mapan untuk menjelaskan kejadian dari Dentuman Besar sampai dengan masa Inflasi. Inflasi adalah proses di mana alam semesta mengembang 1030 kali dalam waktu 10-35 detik. Saat berusia sekitar 300.000 tahun, cahaya terbebas dari lautan partikel sub-atomik. Cahaya inilah yang disebut radiasi CMB (baca teks). Pola penyebaran cahaya ke segenap penjuru Alam Semesta bisa dilacak dari keberadaan CMB sekarang. Diilustrasikan di atas bagaimana Satelit WMAP menghasilkan peta CMB yang memberikan gambaran kepada kita bagaimana kejadian pada saat Alam Semesta berusia 300.000 tahun. Peta utuh CMB hasil WMAP dapat dilihat pada Gambar 4.
Gambar 3. Sejarah singkat Alam Semesta dalam gambar. Saat ini fisika kita belum mapan untuk menjelaskan kejadian dari Dentuman Besar sampai dengan masa Inflasi. Inflasi adalah proses di mana alam semesta mengembang 1030 kali dalam waktu 10-35 detik. Saat berusia sekitar 300.000 tahun, cahaya terbebas dari lautan partikel sub-atomik. Cahaya inilah yang disebut radiasi CMB (baca teks). Pola penyebaran cahaya ke segenap penjuru Alam Semesta bisa dilacak dari keberadaan CMB sekarang. Diilustrasikan di atas bagaimana Satelit WMAP menghasilkan peta CMB yang memberikan gambaran kepada kita bagaimana kejadian pada saat Alam Semesta berusia 300.000 tahun. Peta utuh CMB hasil WMAP dapat dilihat pada Gambar 4.
CMB sebagai Pembuka Jalan
Jika saja Heinrich Olbert mengetahui keberadaan CMB, maka mungkin dia tidak membuat paradoksnya. Seperti halnya cahaya tampak (pada panjang gelombang 380 nanometer – 780 nanometer), CMB juga terdiri dari partikel cahaya (foton), tapi pada panjang gelombang radio (sekitar 1 milimeter sampai dengan 10 milimeter). Foton-foton CMB ini mengisi penuh Alam Semesta kita dengan kerapatan 400 per cm-  kira-kira  ada sekitar 400 foton CMB menembus ujung ibu jari kita setiap saat. Jadi dari satu sisi, Olbert benar bahwa seharusnya Bumi kita dihujani cahaya dari segala arah, sayangnya cahaya itu bukanlah cahaya tampak.
Sampai saat ini CMB adalah bukti terkuat dari kebenaran Teori Dentuman Besar. Teori ini memprediksi bahwa Alam Semesta transparan terhadap cahaya setelah berumur 300 ribu tahun (formasi galaksi terbentuk setelah 5 miliar tahun). Sebelum itu Alam Semesta masih berupa lautan partikel-partikel subatomik yang sangat padat dengan temperatur sangat tinggi (dalam orde miliar Kelvin). Seiring dengan pertambahan umur dan pengembangan Alam Semesta, temperatur juga menurun. Saat cahaya lepas dari “lautan” tersebut, temperatur Alam Semesta sekitar 3000 K – temperatur yang sama untuk foton yang melesat saat itu.
Satelit COBE (Cosmic Background Explorer) yang diluncurkan pada tahun 1989 mengukur temperatur CMB saat ini 2.725 +/- 0.002 K (disebut juga temperatur Alam Semesta) dan membuktikan bahwa radiasi CMB mengikuti hukum Radiasi Kotak Hitam (Blackbody Radiation). Selain mengukur temperatur, Satelit COBE juga “memotret” CMB dan menemukan fluktuasi kecil temperatur pada CMB (anisotropi CMB). Fluktuasi ini kemudian dipelajari sebagai indikasi bagaimana materi dan radiasi terdistribusi saat Alam Semesta masih sangat muda. Pemahaman ini adalah kunci untuk memahami bagaimana galaksi dan struktur berskala besar pengisi Alam Semesta kita terbentuk.
Satelit COBE kemudian dilanjutkan oleh Satelit WMAP (Wilkinson Microwave Anisotropy Probe) untuk mendapatkan fluktuasi CMB dengan akurasi lebih tinggi (Gambar 4). Satelit ini diluncurkan pada tahun 2001 dan memberikan hasil lebih mengejutkan daripada COBE. Salah satunya adalah perhitungan kandungan Alam Semesta yang terdiri dari komposisi 4% dari materi dan radiasi yang kita kenal, 22% dari materi tak-dikenal (disebut Dark Matter), dan 74% dari energi yang misterius (disebut Dark Energy).
Gambar 4. Bayangkan anda di dalam sebuah ruangan berbentuk bola dan menggambar di dinding bagian dalam ruangan tersebut. Dinding kemudian dibentang menjadi 2 dimensi. Beginilah Satelit COBE dan WMAP mendeteksi CMB kesegala arah dan kemudian memetakannya dalam 2 dimensi.  Atas: Hasil pemetaan CMB oleh Satelit COBE. Bawah: Hasil pemetaan CMB oleh Satelit WMAP. Terlihat peningkatan kualitas dan akurasi gambar. Bagian berwarna merah menunjukkan titik temperatur tertinggi, sementara yang berwarna biru menunjukkan titik temperatur terendah.
Gambar 4. Bayangkan anda di dalam sebuah ruangan berbentuk bola dan menggambar di dinding bagian dalam ruangan tersebut. Dinding kemudian dibentang menjadi 2 dimensi. Beginilah Satelit COBE dan WMAP mendeteksi CMB kesegala arah dan kemudian memetakannya dalam 2 dimensi. Atas: Hasil pemetaan CMB oleh Satelit COBE. Bawah: Hasil pemetaan CMB oleh Satelit WMAP. Terlihat peningkatan kualitas dan akurasi gambar. Bagian berwarna merah menunjukkan titik temperatur tertinggi, sementara yang berwarna biru menunjukkan titik temperatur terendah.
Sudah banyak riset terfokus pada CMB dilakukan, mengkaji dari segala aspek seperti temperatur, energi, fluktuasi, dan parameter-parameter kosmologi. Semua riset itu, walau berbeda alat dan metoda ukur, menunjukkan satu arah yang sama: CMB adalah kunci utama untuk mempelajari lebih jauh bagaimana Alam Semesta saat muda dulu, dan nantinya bagaimana Alam Semesta tercipta dan berakhir.
Dark Matter dan Dark Energy
Keberadaan Dark Matter terdeteksi dari ketidakcocokan antara perhitungan perputaran Galaksi Bima Sakti (galaksi di mana tata surya kita berada) dan pengamatan (observasi) langsung kecepatan galaksi. Dari pengetahuan kita tentang sifat fisik Galaksi Bima Sakti (terutama massa dan ukuran galaksi), kita bisa menghitung kecepatan perputaran galaksi. Namun, pengamatan kecepatan galaksi menunjukkan hasil lain yang menandakan bahwa ada massa yang tidak teridentifikasikan dalam Galaksi Bima Sakti. Massa yang tidak teridentifikasikan inilah yang dinamai Dark Matter.
Dark Matter tidak memancarkan atau memantulkan radiasi (berbeda dengan Lubang Hitam yang menyerap dan juga memancarkan radiasi). Ini membuat astronom kesulitan untuk mendeteksinya – sejauh ini astronom mendeteksi benda-benda langit dengan penangkapan radiasi dari benda-benda tersebut; spektrum radiasi dari masing-masing benda memberikan karakteristik fisik dari benda tersebut. Selain dari pengamatan kecepatan galaksi, Dark Matter bisa dideteksi dari pengaruh gaya gravitasi yang dipancarkannya. Satelit WMAP menyatakan 22% Alam Semesta terdiri dari Dark Matter.
Sementara Dark Energy adalah energi yang melawan gaya gravitasi – disebut juga anti-gravitasi. Energi ini sudah diprediksi oleh Teori Relativitas Umum Einstein, energi inilah yang menyebabkan Alam Semesta sedang mengembang dengan percepatan tertentu, mengalahkan gaya gravitasi, seperti saat ini. Alam Semesta mengembang dengan percepatan tertentu telah dibuktikan oleh Edwin Hubble (Astronom Amerika Serikat, 1889 – 1953) pada tahun 1929. Dan Satelit WMAP mendeteksi 74% komposisi Alam Semesta adalah Dark Energy. Beberapa eksperimen berteknologi canggih dan beragam metoda sedang dirancang untuk melacak lebih akurat eksistensi Dark Matter dan Dark Energy.
Sementara itu, materi yang terbuat dari atom-atom, atom-atom yang tersusun dari proton-neutron-elektron, dan proton-neutron yang terbuat dari quark, serta radiasi sebagai manifesto cahaya hanyalah mengisi 4% dari Alam Semesta kita. Dengan kata lain, ilmu fisika kita yang sudah kita anggap mapan hanyalah sanggup untuk menjelaskan 4% dari Alam Semesta kita – dan itu pun belum sempurna karena masih banyak hal-hal yang belum sempurna terjelaskan dari interaksi materi dan radiasi.
Baik Dark Matter maupun Dark Energy adalah tambahan misteri di dunia sains kita. Berbeda dari misteri-misteri lainnya dalam dunia sains yang masih seputar interaksi materi dan radiasi, dua misteri ini memiliki keunikan tersendiri: kita tidak tahu apakah mereka terbuat dari materi dan/atau radiasi yang sama dengan yang kita kenal.
Fisika kita belum selesai, sains kita masih jauh dari sempurna. Pencarian masih jauh, malah mungkin tidak akan pernah terbuka seutuhnya. Beginikah Dia menebarkan ayat-ayat-Nya untuk dibaca oleh kita dan kemudian pada akhirnya kita harus tersadar bahwa perbandingan ilmu-Nya dan yang Dia izinkan kita untuk dipelajari seperti air lautan dan setetes embun yang jatuh dari daun?
PS: Tulisan ini pernah dimuat di Suplemen Cakrawala, Harian Pikiran Rakyat. Tulisan ini dipindahkan dari blog saya yang lama.

About Febdian Rusydi

I am a physics lecturer and researcher in University of Airlangga, Surabaya, Indonesia.
This entry was posted in Astro & Cosmos and tagged . Bookmark the permalink.

10 Responses to Melajak Sejarah dan Komposisi Alam Semesta

  1. AUGI JD says:
    Asslm.Wr.Wb.
    Bila umur semesta berumur 13,7 milyar tahun.
    CMB berumur 300-400.000 tahun, kondisi transparan homogen (gelap transparan ?)dengan temperatur 2,75 K. Pusatnya Big Bang dibalik CMB yang berumur 13,3 milyar tahun.
    Merujuk ayat suci Al Quran
    “Dan Dia-lah yang menciptakan langit dan bumi dalam enam masa, dan adalah Arasy-Nya di atas air, agar Dia menguji siapakah di antaramu yang lebih baik amalnya …” QS Hud 7
    Bagaimana pembentukan air, H20 dari unsur hidrogen diawal pembentukan semesta sekitar CMB ?
    Wallahu alam B.
    Wass.Wr.Wb.
  2. Waalaikumsalam, Kang Augi… kumaha’?
    Cahaya “lahir” ketika umur Alam Semesta 400 ribu tahun. Sebelum itu, cahaya terperangkap di dalam “lautan” partikel subatomik. Temperatur Alam Semesta saat itu masih sangat tinggi (mendekati orde 105 K). Temperatur 2,73 K itu adalah saat sekarang (present time).
    Atom pertama terbentuk adalah Hidrogen (H). Atom Hidrogen terdiri dari dari satu proton (di sebut inti atom) dan satu elektron yang mengorbit pada intinya — sangat primitif. Kemudian diikuti Helium, Litium, dan atom-atom berat lainnya.
    Proses pembentukan air tidak di awal, karena air mengandung atom Oksigen (molekul air adalah H2O) dan atom Oksigen termasuk atom yang rumit (mengandung banyak proton dan elektron). Hanya saja, air memiliki atom tertua, yaitu Hidrogen.
    Tentu saja penjelasan ini adalah berasal dari sains, dan bukanlah pada tempatnya sains menjadi takaran kebenaran dari ayat Al Quran.
  3. yoga says:
    assalamualaikum wr. wb.
    Salam kenal mas Febdian, :)
    saya sangat senang sekali ketika membaca artikel-artikel di blog ini. rasa ingin tahu saya terhadap alam semesta ini sangat besar, namun saya bukan orang yg pintar, saya sangat tertarik dan menyukai fisika tetapi saya tidak mengerti rumus2 dan perhitungannya :( ,
    tetapi sedikit2 saya mencoba untuk bisa memahaminya,
    oh iya saya sempat bingung dengan ayat2 al quran ttg proses penciptaan alam semesta, dalam QS Hud ayat 7 Allah menciptakan alam semesta dalam 6 masa, apakah mas febdian tahu dan bisa menjelaskan maksud 6 masa itu?
    ataukah mas Febdian bisa memberitahu kepada saya bagaimana proses penciptaan bumi dan langit menurut fisika secara garis besar?
    didalam QS Fushilat ayat 9-12 disebutkan bahwa Allah menciptakan bumi dlm 2 masa, menciptakan gunung dan takaran makanan bagi mahkluk hidup dalam 4 masa, dan menciptakan 7 lapis langit yang masih berupa asap dalam 2 masa. saya ingin mengetahui bagaimana penjelasan sains tentang penciptaan langit dan bumi ini.
    terimaksih.
    wassalamualaikum wr.wb.
  4. Waalaikumsalam warahmatullah. Maaf komentarnya baru muncul sekarang, karena akhir-akhir ini saya tidak sempat membuka internet.
    Mengenai QS Hud ayat 7, atau secara umum ayat-ayat Al Quran apa saja, saya belum berani untuk menafsirkannya karena memang belum maqam saya. Saya juga biasanya bertanya kepada yang lebih ahli. Salah satunya, yang saya tahu, Pak Agus Purwanto, pengarang buku “Ayat-ayat Semesta.” Selain seorang fisikawan, beliau juga seorang santri yang lama mempelajari Al Quran.
    Sedangkan dari kacamata fisika, proses penciptaan Alam Semesta memiliki banyak skenario. Yang paling banyak diyakini orang sekarang adalah skenario Big Bang, atau dentuman besar. “Langit” dalam konteks fisika adalah segala sesuatu di luar Bumi dan “Bumi” adalah ya Bumi sendiri. Proses penciptaan “langit” belum tuntas, karena “langit” terus berevolusi. Bintang misalnya, salah satu keluarga “langit”, mengalami proses kelahiran, pertumbuhan, dan kematian persis seperti makhluk hidup. Ilmu yang mempelajari evolusi langit ini adalah Kosmologi.
    “Bumi” sendiri juga berevolusi, rupa permukaan Bumi yang kita lihat sekarang tidak sama dengan sekian juta tahun yang silam. Planet Bumi lahir bersama-sama planet-planet lain di Tata Surya kita, yaitu dari bagian-bagian Matahari saat Matahari sedang dilahirkan. Salah satu skenario penciptaan planet-planet adalah Teori Nebula. Mudah-mudahan nanti saya ada waktu buatkan satu artikel sederhana tentang Teori Nebula ini.
  5. yoga says:
    terimaksih banyak mas Febdian,
    saya jadi gak sabar menanti artikelnya.. :)
  6. murtadha says:
    Assalamu alaikum ..
    Salam kenal juga mas febdian ..
    kayaknya saya perlu banyak belajar dari anda neh .. hehehe boleh gak? terimakasih …
    best Regard
  7. Waalaikumsalam, salam kenal kembali. ^^
  8. sony says:
    Assalamuallaikum, wr, wb.
    Banyak terima kasih buat mas Febdian Rusydi,
    saya bangga dengan mas Febdian bisa menjadi seorang fisikawan
    dan tetap menjadikan AlQuran sebagai petunjuk no. 1 yang tidak terbantahkan.
    Semoga ilmu yang di share oleh Mas dapat bermanfaat bagi semua
    dan tentu saja menjadi ladang amal jariyah untuk Mas Febdian.
    Amiin.
    Wassalamuallaikum, wr, wb.

Leave a Reply

Your email address will not be published. Required fields are marked *
 *
You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>


Get a new challengeGet an audio challengeHelp